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Symbiodinium kawagutii (clade F) coats the surface of Acropora 
solitaryensis, resulting in the formation of a sheet-like crust  

I. Yuyama, T. Higuchi, T. Mezaki  

Abstract  Symbiodinium kawagutii (Symbiodinium sp, belonging to clade F) is one of the 

endosymbiotic algae isolated from reef-building corals. In order to investigate the characteristics of 

S. kawagutii as a symbiont, we tried to make corals associated with S. kawagutii, and compared 

them with other Symbiodinium associating corals. Aposymbiotic juvenile polyps (Acropora 

solitaryensis) were inoculated with monoclonal Symbiodinium cultures of CCMP2468 (S. 

kawagutii, clade F), CCMP 2466 (S. goreaui, clades C), and CCMP2556 (S. trenchii, clade D), and 

maintained in Petri dishes containing artificial seawater at 25C for 5 months. We observed high 

densities of S. goreaui and S. trenchii inside each polyp. In contrast, S. kawagutii cells were not 

observed inside polyps. Instead, algal cell aggregations were found attached to the outside surface of 

polyps. Under the attachment sites of S. kawagutii aggregations, a sheet-like crust was observed on 

the coenesteum. Here we show that S. kawagutii does not form an endosymbiotic relationship with 

acroporid corals.  
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Introduction 

There are various genetic types of the endosymbiotic dinoflagellate, Symbiodinium spp., so-called 

zooxanthellae (Taylor 1974; Rowan and Powers 1991). Although corals are commonly associated with clade 

C or clade D Symbiodinium, their symbiont type can change due to temperature, and host-growth stage and 

their habitat (Baker 2003; Pochon et al. 2004; Santos et al. 2004; Chen et al. 2005; Thornhill et al. 2006; 

Suwa et al. 2008; Abrego et al. 2009; Byler et al. 2013; Tonk et al. 2013; D'Angelo et al. 2015). Clade F 

Symbiodinium are occasionally detected with Alveopora japonica in temperate regions, suggesting that clade 

F is tolerant to low temperatures (Rodriguez-Lanetty et al. 2003; Lien et al. 2012). A Symbiodinium culture 
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(CCMP 2468, referred to as Symbiodinium kawagutii) of clade F5 was originally isolated from the Hawaiian 

stony coral, Montipora verrucosa (now M. capitata Trench and Blank 1987, Lin et al., 2015). However, clade 

F is not generally found in stony corals, but rather in foraminifera (Fay et al. 2009). Symbiodinium clade F 

remains poorly understood as a symbiont of corals and at the physiological level.  

       Some Symbiodinium cultures can be experimentally introduced as symbiont into aposymbiotic juvenile 

corals, and coral-monoclonal algae symbiotic systems can be established. Several studies have confirmed 

that juvenile corals can take up Symbiodinium clades A and D (S. trentii) within a few days after the start of 

inoculations (Yuyama et al. 2005, 2012, Yuyama and Higuchi 2014). Clade C (S. goreaui) can colonize 

corals, if they are co-cultured with corals for more than 2 months (Yuyama and Higuchi 2014). Acroporid 

corals have been used in such inoculation experiments because they can be artificially induced to 

metamorphose and remain in the aposymbiotic state as juvenile polyps (Iwao et al. 2002; Yuyama et al. 

2005, 2011). Acropora solitaryensis used in this study is a dominant temperate species in Japan (Higuchi et 

al. 2015), and has recently expanded to higher latitude habitats (Yamano et al. 2011). If A. solitaryensis can 

acquire clade F Symbiodinium, it might develop increased stress tolerance to cold temperature. We report 

here the responses of A. solitaryensis to inoculation with clades Symbiodinium clades C (S. goreaui), D (S. 

trenchii), and F (S. kawagutii) cultures.  

 

Materials and methods  

The Symbiodinium strains CCMP2466 (S. goreaui, clade C), CCMP2556 (S. trenchii, clade D) and 

CCMP2468 (S. kawagutii, Clade F) (Trench and Blank 1987; LaJeunesse et al. 2014) were obtained from 

Bigelow Laboratory for Ocean Sciences (West Boothbay Harbor, ME, USA; https://ccmp.bigelow.org/) and 

cultured in f/2 medium (Wako Chemicals, Osaka, Japan) and antibiotics (kanamycin 20 µg ml-1 and 

ampicillin 50 µg ml-1) at 24C under a 12-h light (50 µE m-2 s-1): 12-h dark cycle.  

       Collection of A. solitaryensis larvae was performed at The Biological Institute on Kuroshio (BIK) as 

previously described (Iwao et al. 2002). Seven days after spawning, larvae were exposed to 2 µM Hym 248, 

the Hydra derived GLW-amide neuropeptide, to induce metamorphosis in petri dishes containing filtered 

(pore size: 0.22 µm) seawater. Cells of each strain of Symbiodinium (approximately 2000 cells ml-1) were 

introduced to juvenile polyps three days after metamorphosis. Each Symbiodinium culture was subsequently 

introduced to Petri dishes containing polyps every day. Two petri dishes containing a total of approximately 

50 polyps were used for each treatment. A subset of the juvenile polyps were maintained in the aposymbiotic 

state for the duration of the experiment. All polyps were maintained at 25C under a 12-h light (70 µE m-2 s-

1):12-h dark cycle for 5 months. To observe coral skeletons incubated with clade F Symbiodinium for 5 

months, polyps were treated with 10% hypochlorous acid. Juvenile polyps were observed with a 

https://ccmp.bigelow.org/
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stereomicroscope. Photographs of polyps were taken using a digital camera (Digital Slight DA-L1; Nikon, 

Tokyo, Japan).  

 

Results  

S. trenchii (clade D) rapidly populated A. solitaryensis juveniles and spread throughout the polyps within 2 

weeks, whereas S. goreaui (clade C) colonization was very slow, showing little increase in polyps after 2 

months. S. kawagutii (clade F) cells did not appear in the polyps. Instead algal cell aggregations were found 

attached to the outside surface of polyps (Fig. 1(i), (ii)). Budding and colony formation occurred in samples 

colonized by S. goreaui or S. trenchii, and their growth rate appeared higher than those inoculated with with 

S. kawagutii (Fig.1(iii), (iv) ). Indeed, aposymbiotic polyps and polyps with S. kawagutii did not bud (Fig. 1 

(i), (ii), (v)).  

       S. kawagutii cell aggregations were removed from the polyps with tweezers. After removal, we found 

that the surface of polyps were coated with a hard, thin, white crust. To more clearly observe the parts 

covered by S. kawagutii cell aggregation, 10% hypochlorous acid was used to remove the algae and soft 

tissues. As shown in Fig. 2, the coenosteum was covered by an additional sheet-like crust. These crusts were 

thin and easily broken. We observed normal coenosteum structure under the crusts.  

 

Discussion  

Although clade F Symbiodinium kawagutii were not incorporated as intracellular symbionts into corals, the 

co-culture of S. kawagutii with juvenile polyps presented us with an interesting result. Clade F is a rare 

Symbiodinium in reef-building corals, except in the temperate coral Alveopora (Pochon and Gates 2010; Lien 

et al. 2012; Rodriguez-Lanetty et al. 2003). In fact, other temperate corals including adult A. solitaryensis 

usually harbor Symbiodinium clade C (Lien et al. 2012). It is possible that Symbiodinium clade F cannot 

successfully colonize A. solitaryensis. Our results also show that clade F (S. kawagutii) -attached corals did 

not form any budding polyps and their growth rate was lower than that of polyps associating with S. goreaui 

and S. trenchii (. 1), suggesting that attachment of S. kawagutii and co-culture with S. kawagutii did not 

promote coral growth. Sheet–like crusts were observed on coenostea under the attachment of the S. 

kawagutii aggregations (Fig. 2). Normally, the body walls of A. solitaryensis consist of a reticulated and 

highly porous coenosteum. Two hypotheses we are considering to explain the formation of these sheet-like 

crusts are 1) the corals make these crusts to prevent the direct attachment of S. kawagutii cells, 2) the crusts 

are made from a composite of S. kawagutii cells and other microbes.  
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Fig. 1 Juvenile Acropora solitaryensis polyps inoculated with Symbiodinium kawagutii  (i)(ii), S. goreaui, (iii) 

or S. trenchii (iv) monoclonal cells. Aposymbiotic polyps maintained during the same period are shown in (v). 

Photographs of polyps were taken 150 days after inoculation. Black arrows indicate clade F Symbiodinium 

covering the coral polyps. Red arrows indicate polyp mouths. Scale bars = 0.25 mm.
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Fig. 2 Skeletons of juvenile Acropora solitaryensis inoculated with S. kawagutii. Soft tissues were removed 

with 10% hypochlorous acid. Black arrows indicate sheet-like crusts (i,ii). Red arrow shows the coenesteum 

after the sheet-like crusts were broken. The sheet-like crusts covered the mouth of the polyps (iii,iv). Scale 

bars = 0.25 mm.  

Coral calcification processes generally take place between calicoblastic epithelium layers and the 

skeleton (Venn et al. 2011; Vandermeulen et al. 1975; Allemand et al. 2004). As these sheet-like crusts broke 

easily and normal coenosteua existed under them, it seemed that the sheet-like crusts formed on the surface of 

the soft tissue of the coral body walls. It remains unclear whether or not these sheet-like crusts are also 

formed through the normal calcification process via calicoblastic layers. Further histological analysis would 

be helpful to confirm the localization of calicoblastic cells near the sheet-like crusts and to clarify the origin 

of the crusts. Another possibility for the origin of the crusts is a composite of S. kawagutii cells and 

microbes, because free-living Symbiodinium in culture have been shown to form calcifying microbial–algal 

communities that deposit aragonitic spherulites called symbiolites (Frommlet et al., 2015). The mechanisms 

that produce the symbiolites is unclear, but this ability suggests that the sheet-like crusts could be produced 

by something other than corals.  
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Although Symbiodinium clade F (S. kawagutii) used in this study may not correspond with the symbiont 

clade F inhabiting the reef-building coral, we showed that A. solitaryensis did not form an endosymbiotic 

relationship with S. kawagutii. After the 5 month incubation, free-living S. kawagutii cells coated the coral 

bodies, resulting in the formation of a sheet–like crust on the coenesteum.  
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